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Asymptotic Normality in Monte Carlo Integration 

By Masashi Okamoto 

Abstract. To estimate a multiple integral of a function over the unit cube, Haber pro- 

posed two Monte Carlo estimators J' and Ji based on 2N and 4N observations, respec- 1 2~~~ 
tively, of the function. He also considered estimators D2and D2of the variances of Ji 

and Ji, respectively. This paper shows that all these estimators are asymptotically norm- 

ally distributed as N tends to infinity. 

1. Introduction. Monte Carlo integration is a method to estimate the value of a def- 
inite integral of a given real-valued function over a finite region (say, a cube) by observing 
the value of the function only at a finite number of points in the region which are chosen 
suitably and stochastically. Kitagawa [4] proposed several estimating methods but he was 
concerned mainly with the case when the function has a certain prior distribution. 

Haber [1], [2] proposed a mesh estimator of the integral and then improved it 
by means of the idea of "antithetic variates" due to Hammersley and Morton [3]. 
Specifically, let f be a real-valued function defined over the unit cube Gs in the s- 
space and set I = fG f. Let Ar (r = 1, . . . , N) be a family of congruent subcubes 

arising by partitioning Gs so that the interval [0, 1] on the xi-axis is divided into n1 

equal subintervals for each i = 1, . . ., s, where N = n1 ... ns. Let xr be a random 

point in Ar chosen independently for each r and let x =2cr - Xr, where cr stands for 
the center of Ar. Then 

1N (1.1) J1 N= 1N f(xr) 
r= 1 

and 

1 N f(xr) + f(xr') 
(1.2) J r E 

r= 1 

are unbiased estimators of I based on N and 2N observations of f, respectively. 
To estimate the variances of J1 and J2 we need replications of observations. 

Let Zr be another random point in Ar the Zr being chosen independently of each 
other and also of the x's. Define similarly Z4 = 2cp - Zr* Then 

(1.3) N 
_ f _(xr) + f(zr) 

1N r= r 2 
and 

(1.4) 1 N f(Xr) + f (xr) + f(zr) + f(zr) 
2 

r 1 

Received August 26, 1975; revised January 27, 1976. 

AMS (MOS) subject classifications (1970). Primary 65D30; Secondary 62E20, 60F05. 

Key words and phrases. Monte Carlo integration, Haber's estimators, asymptotic normality, 

Lyapunov condition. 

831 Copyright (o 1976, American Mathematical Society 



832 MASASHI OKAMOTO 

are again unbiased estimators of I based on 2N and 4N observations, respectively. By 
using these random points, the variances of J'1 and IJ can be estimated unbiasedly by 

(1.5) 2 N ) 
D5 1 = 4N2 E {f(Xr) f(Zr)}2 

and 

(1 .6) 4Np 2 1 
f 

(xr) + (Xr) f (zr) + f 
(Zr? ) 

2 

respectively. 
For k = 1 and 2 let Ck denote the set of all real-valued functions defined over 

Gs and having continuous kth order partial derivatives. In the sequel we say just 
"N-+ oo" to indicate that ni ? ?c for every i = 1, . . , s. Put n = min(n,. . . , ns). 
Haber proved that if f E C1, then 

(1.7) var(J1) = (J1) + o((Nn2)-1) as N 00,oo, 

and also that if f E C2, then 

(1.8) var(J2) = 7N(J2) + O((Nn4)1) as N -*00 

where 

(Ji) =1212N *i= n IGS (1f) 

(1.9) r2(J) = I 3 
n 

2 

1440N i=_ I G4 (x i(x) 

?5i=- (nin1)2 fGS x 2 

Furthermore, since J (k = 1, 2) is the average of two independent realizations of 

Jk, its variance is half as large as that of Jk. In estimating I by Jk, Haber used Dk as 
a measure of the error, assuming that J4 is approximately normally distributed. 

The purpose of this paper is to show, first, that Jk (k = 1, 2) is asymptotically 
normally distributed with mean I and variance 2 (Jk) as N - oo. This implies the 

asymptotic normality of J4. Next, it is shown that D2 (k = 1, 2) is asymptotically 
normally distributed with mean var(Jk) and a proper variance. 

2. Asymptotic Normality of J1 and J2. Before stating the theorems we intro- 
duce some notations. Let 

Ir = E {f(Xr)} = N f, 

rr ( - * )Xr Crr 

fr = f(cr), fri = a (Cr) and frf - (Cr), 
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where x = (x, ., xs), for i,= 1,.. ,s, and r = 1, ... , N. The L2-norm wili 
be denoted by 11 1. 

THEOREM 1. Assume f E Cl. As N > oo, J1 is asymptotically normally dis- 
tributed with mean I and variance 7-2(J1) defined in (1.9). 

Proof. Since I = EN 1 IrIN, it holds that 

N 
(2.1) 1E N AXO-Ir} 

Nr= 1 

A Taylor series expansion of f(xr) around the point cr gives 

S 

(2.2) f(xr) = fr + E 6fr + Rir 
i=l1 

where the remainder RI r has the following property in view of the uniform continuity 
of af/ax1 in Gs: for any C > 0, IR1r I S cII6rll for every r, provided N is sufficiently 
large. 

Again, by a Taylor expansion we have 

(2.3) Ir = fr + R2r, 

where IR2r j < e/n for every r, provided N is sufficiently large. Substitution of (2.2) 
and (2.3) into (2.1) yields 

(2.4) J1-I= SN +RN, 

where 

1N S1 N 
(2.5) SN NT r rf RN= NE (Rlr R2r). 

r= Ii=1 r=1 

Since E(J1) = I, to prove the theorem it remains only to verify the following 
three propositions: 

(i) var(SN) 
_ 

T2(J1) as N - 0o, 

where the symbol - means that the ratio of the two sides tends to one, 
(ii) the sequence SN satisfies the Lyapunov condition of the central limit theo- 

rem (see, e.g., Loeve [5, p. 275]), and 

(iii) var(RN) = o((Nn2)f') as N > oo. 

In fact, in the right-hand side of the identity 

J1-I SN - E(SN) RN - E(RN) 

TN TN TN 

the first term converges to the standardized normal distribution because of (i) and (ii), 
whereas the second term converges in probability to zero because of (iii) and the 

Chebyshev inequality. 
Now, part (i) is essentially equivalent to Theorem 3 of Haber [1] or (1.7); but a 

proof is given here for the completeness of the proof. By definition, 8' has a uniform 

distribution over the interval [- 1/(2ni), 1/(2ni)] independently of each other; and 

hence, var(5') = 1/(12n3), which implies that 
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N S 2 
var (SN) = I '(l,2 2r(J1) as N oo. 

Re (ii). Define XNr = S= frf, then 

(2.6) ,E(XN2r) N2 var(SN). 
r 

From the inequality 1I5I 6 1/(2ni) it follows that 

(2.7) rXN36 8iEZIf; I/ni) 3 JK I 8 3) =O(Nn-3). 

By (i), (2.6) and (2.7) 

[ EIXNrI3]/[ E(XN2)] = O(N-1/2) = o(- ) 

which is the Lyapunov condition for SN. 
Re (iii). Since R2r are constant, 

var(RN) = , var(Rlr)/N2 6 E E(R2 r)/N2 6( 2 /(Nn2). 
r r 

This implies (iii), since c can be made arbitrarily small. Q.E.D. 
Remark. The asymptotic normality may be proved by applying the central 

limit theorem directly to J1 in the form (1.1), not indirectly to SN. This approach, 
however, requires asymptotic expansions of E {f2(Xr)} and Ir up to the terms of order 

n-2 so that a stronger assumption f E C2 is needed instead of f E C1. This remark 
is valid also with Theorems 2, 3 and 4 for which a much stronger assumption f E Ck 
(k = 4, 4 and 6, respectively) is required. 

7DIEOREM 2. Assume f E C2. As N oo, J2 is asymptotically normally dis- 
tributed with mean I and variance 2k(J2) defined in (1.9). 

Proof. Similarly as (2.1) 

1 N 
(2.8) J2-I1= 2 E (xr) + f(xr)-2Ir} 

r1 

Expanding f(xr) and f(x') in Taylor series around the point cr, we find 

f(xr) =fr + ?E r r 2 r r r, 
i=l i,j=1 

(2.9) 
S is 

f(XI) =fr - I 
i=l i,j=l 

where JRIrI and IR'trl are bounded from above by 11I6rII2 for every r, provided N is 
sufficiently large. 

Taking one more term in the expansion (2.3), we have 
s 1 

(2.10) Ir r f4ni 
w=f 24no 

where IR2 r I -< c/n2 for every r. Substitution of (2.9) and (2.1 0) into (2.8) yields 
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J2 I = SN + RN, 

where 

= N /s . s i SN N rI r r I JrJ 
(2.1 1) 2N r= Il,i=1 i= I 12n2 / 

1N 
RN= 2N , (Rlr + Rlr - 2R2r). 

r= I 

Just as for Theorem 1 we have only to prove the following three propositions: 

(i) var(SN) - 
rN(J2) as N 00, 

(ii) SN satisfies the Lyapunov condition, and 

(iii) var(RN) = o((Nn4)f1) as N f oo. 

Part (i) is equivalent to the main theorem in Haber [21 or (1.8), while (ii) and 

(iii) can be verified by using reasoning similar to that in the proof of Theorem 1. 
Q.E.D. 

COROLLARY 1. For k = 1 or 2, assume f E Ck. As N o, Jk follows 
asymptotically a normal distribution with mean I and variance 

(2.12) 2 (jk) 2 NJ) 

3. Asymptotic Normality of D1 and D2. Though the asymptotic normality of 

Di or D2 may not be so important in practice as that of any estimator of I itself, it 
can be proved along a similar line of arguments for the latter. First let us consider 
Di. 

ThEOREM 3. Assume f E Cl. As N oo, D2 is asymptotically normally dis- 
tributed with mean var(J ) and variance 

TN(D2)= I 17 E I aA + 10E I J a ar I 
2i= n( s ax i*=i (n,n)2 s ax,ax) 

Proof. Similarly to (2.2) it is the case that 

(3.1) f(Zr)fr? +Ef:+R2r, 

i= 1 
where 

= ( . * * , r) = Zr - cr, lR2rl S EIttIl for every r. 

Substitution of (2.2) and (3.1) into (1.5) yields 

(3.2) D2 =TN +RN' 

where 
T N /s \2 

4N2 r=l (ir=l ) 
(3.3) 

RN 
1 

N~S 
R -R2 E :(RI, R2r) + 2(R r-R2r) 

( 77R) 2i R 
4Na r=1 = i1 

and 77.= 4 
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Since E(D2) = var(J ), a proof of Theorem 3 can be reduced to the following: 
(i) var(TN) T2(D21) as N oo, 
(ii) TN satisfies the Lyapunov condition, and 

(iii) var(RN) = o((N3n4f)-) as N -o 

Re (i). First we have 

(3.4) Var(T) = 4 E var( 7rfr) 
164r irr 

Since for every i, j and r 

r 
6n2 r 15n0 

E(ni)2 -= 

36nEn= (i :j); 

and since the expectations of any other monomial of the n's of order 2 or 4 vanish, 
we find 

( 2 1 02 

This implies 

var(E71rtf)2 = y80 :7 I(n ) + 10 E2 (fifJr)2t 

Substitution of the last formula into (3.4) proves (i). 
Re (ii). Define 

XNr (?nir:i)2 n 

Then a straightforward calculation gives 

f,EIXNr I3= O(-f 

and hence, 

[ExNl]/E3 
2 

)]/ = O(N_1 2) - 

o(l). 

Re (iii). From (3.3) it follows that 

IRN I 4N2 E' {(116r11 + IItrIt)2 + 2(116,11 + tllrll) n2 E f1 }; 

and hence, 

var(RN) < E(RN) = o((N3n2)1l). Q.E.D 

Remark. Though rk(.J1) defined in (2.12) is indeed the leading term in the 
asymptotic expansion of var(J'1) in n1l, the phrase "mean var(J'1)" in the statement 
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of Theorem 3 cannot be replaced by "mean 2 (J1)", in general. The reason is that 
the difference var(J'1 ) r2(J) is o((Nn2)-1 ) and hence is not negligible in general as 
compared with TN(D2) which is of order (N3/2n2)-l. 

Similarly, we can prove the following: 
THEOREM 4. Assume f E C2. As N oo, D2 is asymptotically normally dis- 

tributed with mean var(J2) and variance 2 (D2) which is a linear combination of 
seven terms of the form 

s a1 r 2f a2f x2 

3,,l 1 1nNN)2 J s 
ta ja j aXk aX 

I 
ijkl1N (ninlnknl) 

where some of i, j, k and 1 are constrained to be equal. 
The root-square transformation of the random variable D2 (k 1, 2) induces 

the following: 
COROLLARY 2. For k = 1 or 2, assume f E Ck. As N oo, Dk is asymp- 

totically normally distributed with mean a(jk) and variance 1/4r(D2)/var(4), where 
o(J) stands for the standard deviation of J4. 
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